Search results for "neutron-rich nuclei"
showing 10 items of 12 documents
The study of neutron-rich nuclei production in the region of the closed shell N=126 in the multi-nucleon transfer reaction 136Xe+208Pb
2015
Expérience LNL/PRISMA; International audience; The unexplored area of heavy neutron rich nuclei is extremely important for nuclearastrophysics investigations and, in particular, for the understanding of the r-process ofastrophysical nucleogenesis. For the production of heavy neutron rich nuclei located along theneutron closed shell N=126 (probably the last "waiting point" in the r-process of nucleosynthesis)the low-energy multi-nucleon transfer reaction 136Xe+208Pb at Elab=870MeV was explored.Due to the stabilizing eect of the closed neutron shells in both nuclei, N=82 and N=126, andthe rather favorable proton transfer from lead to xenon, the light fragments formed in this processare well b…
βDelayed γRay spectroscopy of heavy neutron rich nuclei “south” of lead
2009
Relativistic projectile fragmentation of a 208Pb primary beam has been used to produce neutron-rich nuclei with proton-holes relative to the Z = 82 shell closure, i.e., “south” of Pb. βDelayed γRay spectroscopy allows to investigate the structural properties of such nuclei with A ~ 195 → 205. The current work presents transitions de-exciting excited states in 204Au, which are the first spectroscopic information on this N = 125 isotone. Agramunt Ros, Jorge, Jorge.Agramunt@ific.uv.es ; Algora, Alejandro, Alejandro.Algora@ific.uv.es ; Molina Palacios, Francisco Manuel, Francisco.Molina@ific.uv.es ; Rubio Barroso, Berta, Berta.Rubio@ific.uv.es
Precision mass measurements of neutron-rich nuclei between N=50 and 82
2012
Our knowledge of binding energies of neutron-rich nuclei has experienced a major revision during the last five years due to the introduction of Penning-trap based mass measurements. New mass values for nearly 300 nuclides produced in fission with uncertainties of 10 keV or less have become available. The data produced at three Penning trap facilities at Jyvaskyla, CERN-ISOLDE and Argonne cover all isotopic chains from Ni to Pr, except iodine. In this talk some of this data is reviewed and applied using the mass differentials such as two-neutron binding energy and odd-even staggering to probe their sensitivity on changes in nuclear structure and on the strength of the N=82 shell gap and asso…
Disentangling decaying isomers and searching for signatures of collective excitations in β decay
2019
6 pags., 3 figs., 1 tab. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK
Population of neutron-rich nuclei around 48ca with deep inelastic collisions
2009
The deep inelastic reaction 48Ca+64Ni at 6 MeV/A has been studied using the CLARA–PRISMA setup. Angular distributions for pure elastic scattering and total cross-sections of the most relevant transfer channels have been measured. The experimental results are compared with predictions from a semiclassical model, showing good agreement for the presently analyzed few neutrons transfer channels. The decay of the most intense reaction products has also been studied, giving indications of the population of states with very short lifetimes. Gadea Raga, Andrés, Gadea.Andres@ific.uv.es
Fast-timing study of the l-forbidden 1/2+ -> 3/2+ M1 transition in 129Sn
2016
The levels in 129Sn populated from the β− decay of 129In isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 1/2+ state and the 3/2+ ground state in 129Sn are expected to have configurations dominated by the neutron s1/2 (l = 0) and d3/2 (l = 2) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l-forbidden M1 transition. Using fast-timing spectroscopy we have measured the half-life of the 1/2+ 315.3-keV state, T1/2 = 19(10) ps, which corresponds to a moderately fast M1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effect…
The NEXT Project: Towards Production and Investigation of Neutron-Rich Heavy Nuclides
2022
The heaviest actinide elements are only accessible in accelerator-based experiments on a one-atom-at-a-time level. Usually, fusion–evaporation reactions are applied to reach these elements. However, access to the neutron-rich isotopes is limited. An alternative reaction mechanism to fusion–evaporation is multinucleon transfer, which features higher cross-sections. The main drawback of this technique is the wide angular distribution of the transfer products, which makes it challenging to catch and prepare them for precision measurements. To overcome this obstacle, we are building the NEXT experiment: a solenoid magnet is used to separate the different transfer products and to focus those of …
First evidence of multiple β-delayed neutron emission for isotopes with a > 100
2017
The β-delayed neutron emission probability, Pn, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, Sn. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which β-delayed one-neutron emission (β1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. β1n decays have been experimentally measured up to the mass A ∼ 150, plus a single measurement of 210Tl. Concerning two-neutron emitters (β2n), ∼ 300 isotopes are …
High-sensitivity study of levels in 30Al following β decay of 30Mg
2016
γ -ray and fast-timing spectroscopy were used to study levels in 30Al populated following the β− decay of 30Mg. Five new transitions and three new levels were located in 30Al. A search was made to identify the third 1+ state expected at an excitation energy of ∼2.5 MeV. Two new levels were found, at 3163.9 and 3362.5 keV, that are firm candidates for this state. Using the advanced time-delayed (ATD) βγγ (t) method we have measured the lifetime of the 243.8-keV state to be T1/2 = 15(4) ps, which implies that the 243.8-keV transition is mainly of M1 character. Its fast B(M1; 2+ → 3+) value of 0.10(3) W.u. is in very good agreement with the USD shell-model prediction of 0.090 W.u. The 1801.5-k…
97/37 Rb 60 : The Cornerstone of the Region of Deformation around A∼100
2015
Excited states of the neutron-rich nuclei 97,99Rb were populated for the first time using the multistep Coulomb excitation of radioactive beams. Comparisons of the results with particle-rotor model calculations provide clear identification for the ground-state rotational band of 97Rb as being built on the πg9/2 [431] 3/2+ Nilsson-model configuration. The ground-state excitation spectra of the Rb isotopes show a marked distinction between single-particle-like structures below N=60 and rotational bands above. The present study defines the limits of the deformed region around A∼100 and indicates that the deformation of 97Rb is essentially the same as that observed well inside the deformed regi…